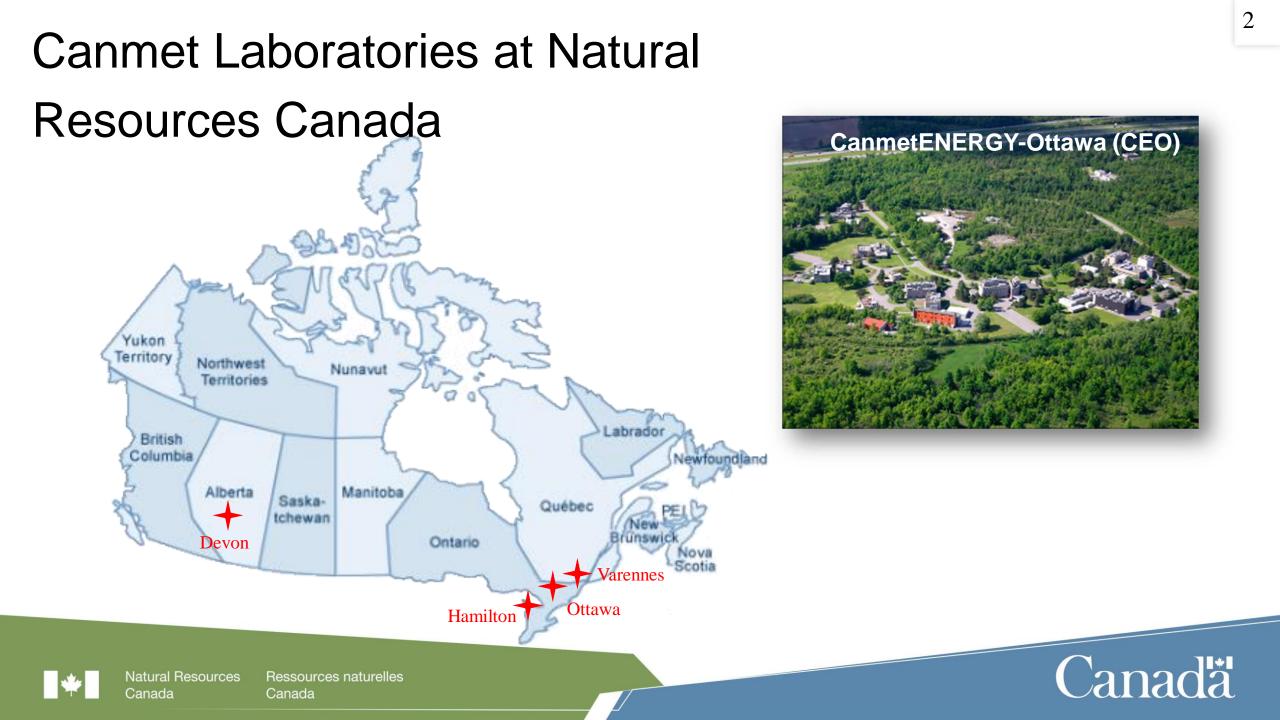


atural Resources Ressources naturelles anada Canada


Solid Woody Biofuels: Quality Specifications and Standards

Solid Wood Bioheat Webinar: Session 2

February 11, 2021

Sebnem Madrali Bioenergy Systems Group CanmetENERGY Ottawa

Bioenergy Program at CanmetENERGY-Ottawa

- Increased utilization of biomass allows Canadian industries to lower their carbon footprint while using secure, local, sustainable resources. Communities derive economic and employment benefits from increased use of local resources.
- CanmetENERGY-Ottawa (CE-O) advances national interests through innovation on conversion of biomass for heat, power and production of solid, liquid, and gaseous fuels.

Canada

Ressources naturelles latural Resources Canada

Fuel Quality MATTERS....

- Biomass materials are important source of renewable energy in Canada, however, not all the biomass is created equal.
- Smaller bioenergy systems, require tighter fuel specifications while industrial plants can utilize large variances in fuel quality and consistency.
- Controlling fuel quality are critical to project viability, safe and reliable operation and to the project bottom line.

atural Resources Ressources naturelles anada Canada

Biomass vs Solid Biofuels

- Broad variety of biomass materials can be used for solid biofuels: forestry to agricultural to MSW
- Common sources of woody biomass -
 - forest residues: branches, tops of trees and other stem wood from harvested trees and unmerchantable trees
 - wood processing residues: bark, sawdust, shavings and off-cuts from processed wood such as panel board, construction timber and furniture
- Wood residue (Hog fuel / bark) / firewood / wood chips / wood briquettes/ wood pellets

5

es Ressources naturelles Canada

Large Variance in Solid Biomass **Fuel Characteristics**

Biomass collection & processing

harvesting practices, equipment, forest type, climate, soil type

- processing (such as comminution, drying), storage, handling & transportation

Canada

moisture content

bulk density

heating value

• size

ash content

fuel nitrogen

chlorine content

design, operation, and performance of

- storage & handling,
- feeding,
- combustion systems

6

Natural Resources Ressources naturelles Canada

Impact of Processing on Fuel Quality: Drying & Screening

Natural Resources Ressources naturelles Canada

Canada

Moisture Content

- CRUCIAL Property as it has direct effect on the fuel value

- energy content -> boiler efficiency
- on weight -> cost of heat production
- Large Variance
 - Freshly harvested (green) wood typically contains about 55-60% water
 - Seasonal variance
 - Due to growth site, tree species, age of tree, local climate

Impact of Moisture Content on Heat Production

Drier Wood Chips 12.5 GJ/t @ MC 30% (wet basis)

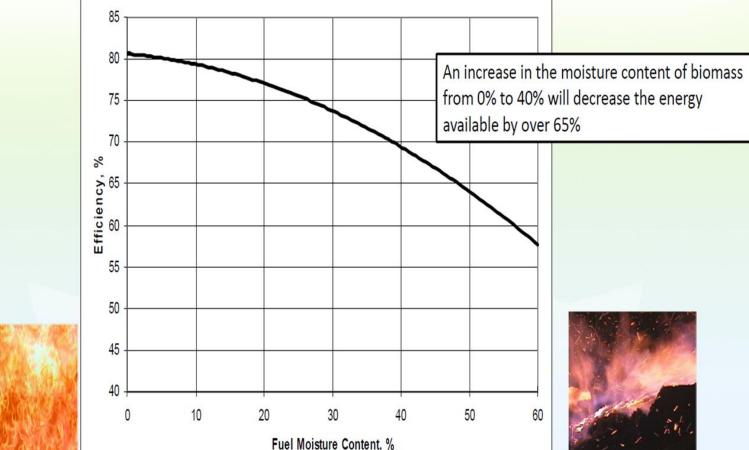
375 GJ

Green Wood Chips

8 GJ/t @ MC 55% (wet basis)

240 GJ

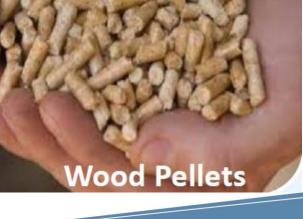
Natural Resources Ressources naturelles Canada


Canada

Impact of Moisture

Content on Boiler

Performance


s Ressources naturelles Canada Self B

Particle size

Briquettes

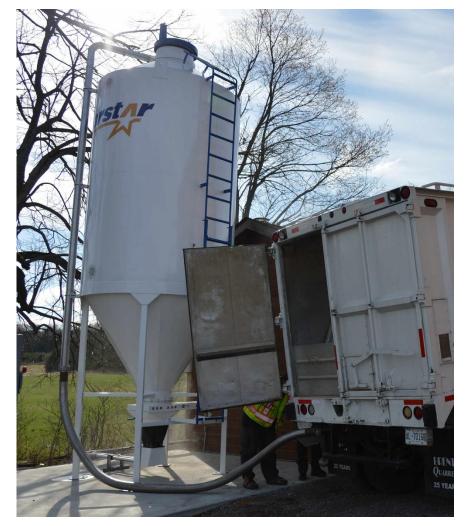
11

Natural Resources Ressources naturelles Canada

Canada

Ash and Extraneous Materials

- Typical ash contents of wood fuels are low (0.5% and 2%)
- Materials, such as soil, gravel, rock, sand and metal, have no fuel value
- Excessive ash leads to:
 - lower energy content per tonne
 - reduced boiler output
 - higher ash volumes to be disposed of
 - more boiler and fuel feed wear and maintenance.
 - problematic for most in-feed systems



Canada

Ressources naturelles atural Resources Canada

Safety & Health Considerations

Courtesy of Biothermica

Natural Resources Ressources naturelles Canada Canada

13

Dust Generation (can lead to explosivity)

Off-gassing

Self heating (can lead to instantaneous combustion

Importance of Solid Wood Fuel Quality

- Controlling fuel quality are critical
 - to project viability
 - for safe and reliable operation
 - contributes directly to the bottom line.
- Wide variances in woody biomass fuel quality mean significant thought needs to be put into the feedstock handling system.
- smaller bioenergy systems, have tighter fuel specifications unlike industrial plants which can utilize large variances in size, moisture and ash content.

Standards for Solid Biofuels

Necessary for solid biofuels to become a commodity fuel that users can buy with the expectation of trouble free operation:

- Facilitate free and fair cross-border trade
- Facilitate quality assessment of solid biomass resources
- Facilitate efficient permitting of bioenergy systems (fuel specifications and certified combustion systems)
- Minimize emission of pollutants
- Ensure safe handling and storage of solid biofuels

Natural Resources Canada

Ressources naturelles Canada

Principles of CAN/CSA-ISO 17225 Solid Biofuels

All biomass raw materials

Woody / Herbaceous / Fruit / Blends

Major traded forms

Chips / Pellets/ Briquettes / Bales / Firewood / Bark

Hierarchical and flexible classification

- Origins and sources
- Traded forms
- Properties

Establishes Grading System

- Grades A and B: Residential / Commercial / Institutional
- Grade I: Industrial

Wood Chips

Natural Resources Ressources naturelles Canada Canada

Classification of Origin and Sources of Woody Biomass

Forest, Plantation and other Virgin Wood (1.1)

1.1.1 Whole trees without roots

1.1.3 Stemwood

1.1.4 Logging residue

1.1.6 Bark

1.1.7 Segregated wood from gardens, parks, roadside maintenance

Canada

By-products and residues from wood processing industry (1.2)

1.2.1 Chemically untreated wood by-products and residues

1.2.2 Chemically treated wood by-products, residues, fibres and wood constituents Used Wood (1.3)

Blends and Mixtures (1.4)

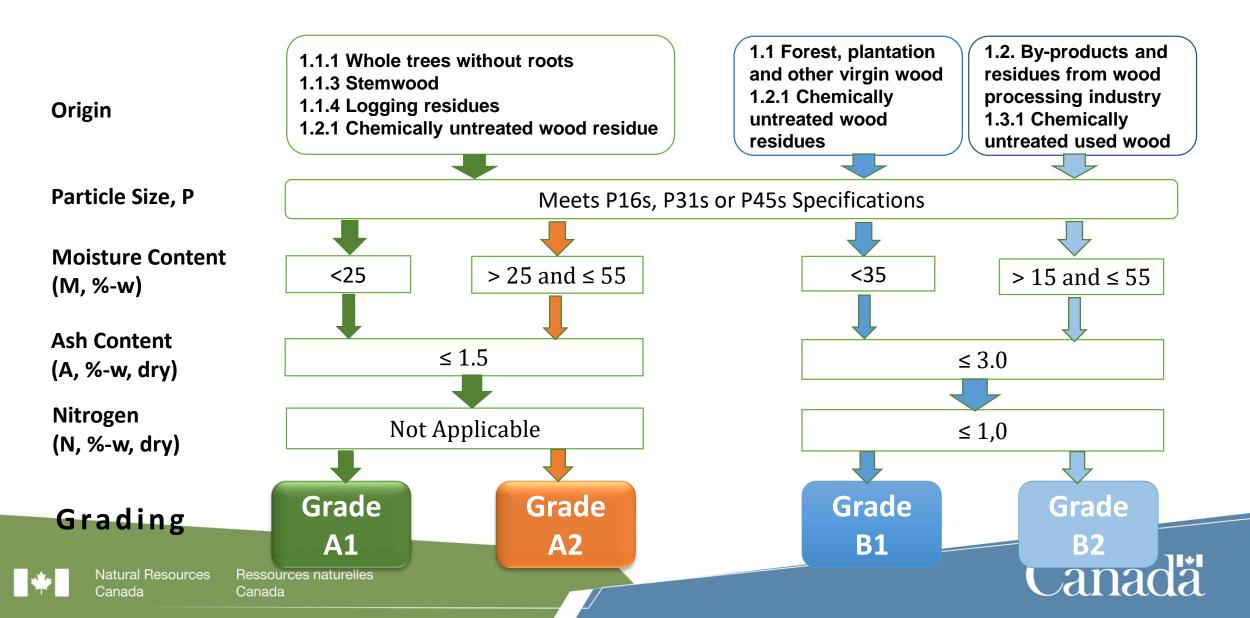
1.3.1 Chemically untreated used wood

1.3.2 Chemically treated used wood

Natural Resources Ressources naturelles Canada

Specification for Graded Wood Pellets (Final Draft of 17225-2:2021) Key Normative Properties Only - Commercial and Residential Applications

	1	Grade A1	Grade A2	Grade B
Origin & Sources		1.1.3 Stemwood 1.2.1 Chemically untreated wood by-products and residues	 1.1.1 Whole trees without roots 1.1.3 Stemwood 1.1.4 Logging residue 1.2.1 Chemically untreated wood by-products and residues 	1.3.1 Chemically untreated used wood 1.3.2 Chemically treated used wood
Moisture, M	% in mass, wb, ar	M10 ≤ 10		
Ash, A	% in mass, dry	A0.7 ≤ 0.7	A1.2 ≤ 1.2	A2.0 ≤ 2.0
Mechanical durability, DU	% in mass, ar	DU98.0 ≥ 98.0 for D06 DU97.5 ≥ 97.5 for D08	DU97.5 ≥ 97.5	DU96.5 ≥ 96.5
Fines, F	% in mass, ar	F1.0 ≤ 1.0		
Net calorific value, Q	MJ/kg, ar	Q ≥ 16.5		
Bulk density, BD	kg/m ³ , ar	600 ≤ BD ≤ 750		


ar: as received; wb: wet basis

Canada

Natural Resources Ressources naturelles Canada

Specification for Graded Wood Chips (Final Draft of 17225-4:2021) Key Normative Properties Only

Quality requirements of solid fuels for different applications and technologies

Application	Solid Biofuel	Quality requirements	Technology	
Residential (< 150 kW)	Firewood Wood briquettes	Moisture ≤25 %-w for firewood Ash ≤1.0 for Wood briquettes	Stove, fireplace, log furnace, log boiler	
	Wood pellets	DU ≥ 97.5w-% Ash ≤ 1 w-%	Pellet stoves, boiler, furnace	
Public / Commercial / institutional buildings, small greenhouses (50 kW to <1 MW)	Wood chips	$M \le 35\%$ -w for combustion technologies $M \le 15\%$ -w for CHP Homogenous particle size (30 – 45 mm)	Stoker fired boilers Grate combustion Small CHP (gasification + IC engine based) Pellet boilers	
	Wood pellets	DU ≥ 97.5 w-% Ash ≤ 1 w-%		
District Heating (< 3 MW)	Wood chips	$M \le 45\%$ -w for grate combustion Ash < 1%-w Particle Size 10 – 100 mm	Grate combustion CHP (combustion + ORC)	

Canada

CSA SPE 2254 : 2019 – Guide to Wood Chip Fuel

- First edition of a homegrown guidance document presenting wood . chip fuel as a consistent and reliable renewable low carbon fuel source in Canada.
- Intended audiences include: .
 - producers and suppliers of wood chips including aggregators, sawmills, loggers, urban tree services, woodland management services, value added wood processors such as furniture and cabinet makers, and flooring manufacturers;
 - project developers, including equipment manufacturers, engineering professionals, architects, planning and procurement officers; and
 - end-users including facilities managers, maintenance staff and those responsible for the purchase of fuel and operation of biomass systems

Guide to wood chip fuel: Characteristics, supply, storage, and procurement

https://www.techstreet.com/standards/csa-spe-2254-19?product id=2045319

Canada

Ressources naturelles latural Resources Canada

CSA SPE 2254:19

Natural Resources Ressources nature les Canada

Solid Biofuels Bulletin No. 4

GRADED **WOOD PELLETS**

Solid Biofuels Bulletin No. 5

GRADED WOOD BRIQUETTES

ENGLISH bulletins: http://www.nrcan.gc.ca/energy/renewableelectricity/bioenergy-systems/biofuels/7399

FRENCH bulletins: http://www.rncan.gc.ca/energie/renouvelableelectricite/systemesbioenergie/biocombustibles/7400

Solid Biofuels Bulletin No. 6

GRADED WOOD CHIPS

Solid Biofuels Bulletin No. 7

GRADED **FIREWOOD**

Canada

Natural Resources Ressources naturelles Canada

Concluding Remarks

- Markets for solid biofuels are fast growing and offer significant opportunities as low carbon fuel option in production of renewable energy, space heating, process heat, combined heat and power
- Biomass fuel standards act as a tool creating common terminologies between producers and users.
- Implementation of fuel quality specifications and classification (grading) is critical for the credibility and long term success of bioenergy.

24

Acknowledgements

- NRCan's Panel on Energy Research and Development (PERD) funding program
- CanmetENERGY-Ottawa Bioenergy Systems Group, Fernando Preto and Robert Glenns
- CanmetENERGY-Ottawa Characterisation Lab

Key Collaborators / Partners

Thank you

For further information please contact Sebnem Madrali

Bioenergy Systems Group CanmetENERGY-Ottawa Natural Resources Canada

sebnem.madrali@canada.ca

List of CSA/ISO Solid Biofuel Standards

Standard Number	Title
CSA/ISO 16559	Terminology, definitions and descriptions
CSA/ISO 17225 – 1	Fuel Specifications and Classes Part 1 General Requirements
CSA/ISO 17225 – 2	Fuel Specifications and Classes Part 2 Graded Wood Pellets
CSA/ISO 17225 – 3	Fuel Specifications and Classes Part 3 Graded Wood Briquettes
CSA/ISO 17225 – 4	Fuel Specifications and Classes Part 4 Graded Wood Chips
CSA/ISO 17225 – 5	Fuel Specifications and Classes Part 5 Graded Firewood
CSA/ISO 17225 – 6	Fuel Specifications and Classes Part 6 Graded Non-Woody Pellets
CSA/ISO 17225 – 7	Fuel Specifications and Classes Part 7 Graded Non-Woody Briquettes
ISO TS 17225 – 8	Fuel Specifications and Classes Part 8 Thermally Treated Solid Biofuels
CSA/ISO FDIS 17225 – 9	Fuel Specifications and Classes Part 9 Graded Hog Fuel

TS: Technical Specification FDIS: Final Draft International Standard

List of Selected CSA/ISO Standards for Physical, Chemical, Mechanical and Safety Test Methods for Solid Biofuels

Standard Number	Title
ISO 14780	Sample preparation
ISO 18135	Sampling
ISO 21945	Simplified sampling method for small scale applications
ISO 17827-1	Determination of particle size distribution for uncompressed fuels — Part 1: Horizontally oscillating screen
ISO 17831-1	Mechanical Durability for Pellets
ISO 17828	Determination of bulk density
ISO 19743	Determination of content of heavy extraneous materials larger than 3,15 mm
ISO 18846	Determination of fines content in quantities of pellets
ISO 18134-1	Determination of moisture content — Oven dry method — Part 1— Reference method
ISO 18134-2	Determination of moisture content — Oven dry method — Part 2 - Simplified method
ISO 18125	Determination of calorific value
ISO 20023:2018	Safe handling and storage of wood pellets in residential and other small-scale applications
ISO 20024	Safe handling and storage of solid biofuel pellets in commercial and industrial applications

Canada

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

